
Created by Werner Krings, Tani GmbH
Creation date: 2022.8.31, last modified 2022.8.31

Technical Data OpcEngine

TODO: DescriptionOpcEngine.inc
OPC Interfaces

OPC Pipe Open interface
OPC UA (Unified Architecture)
OPC DA (Classic OPC over DCOM, available under Windows only)

The maximum number of OPC clients is depending on used resources only. A PC from 2014 can handle multiple hundred connections.
All OPC interfaces are working locally in one PC or over network.
in case of Classic OPC Classic please do not use DCOM over networks, but it will be supported.
OPC UA supports the fast binary protocol. Security is supported in all variants. Multicast discovery is supported.
Data access data items are supported up to 200K each.

OPC UA functionality and limitations

The OPC UA implementation conforms to the specification 1.05.
The OPC UA Standard Model is supported, some extensions exist.
The maximum single request and answerlen is 16m
The OPC UA Alarms & Conditions module is supported. This includes filters, history.
An internal discovery server is active on standard, it supports multicast discovery also. It can be used as a global discovery server. Alternatively an external discovery
server can be configured.
The certificate management GDS Push is supported.

The session timeout will be limited to one hour.
The server and client certificate will be renewed if the Tani self signed certificate is used. All other certificates remain unaffected on expiring. The certificate validity is
checked all 12h. It will be renewed seven days before it expires. Running connections will not be affected, new connections will use the new certificate.
AddNodes is supported with the following restrictions:

Reference type must be OpcUaId_Organizes
NodeId can't be specified
BrowseName can't contain a dot
NodeClass must be Variable or Object
NodeAttributes for Variable:

DisplayName: unspecified or equal to BrowseName
Description: unspecified or any text
Value: is ignored; new variables will always be initialized to 0 (if numeric) or "" (if string type)
DataType:

OpcUaType_Boolean
OpcUaType_SByte, OpcUaType_Byte
OpcUaType_Int16/32/64, OpcUaType_UInt16/32/64
OpcUaType_Float, OpcUaType_Double
OpcUaType_String
OpcUaType_LocalizedString. This will be handled outside OPC UA as a normal string. The LocaldId always is a null string
OpcUaType_DateTime
OpcUaType_ExtendedObject, OpcUaType_ExtendedObjectEx. Mostly this are structures. One of the structure types under Types -> DataTypes ->
BaseDataType -> Structure -> UserStructures; these are the structures known to the PLC Engine core.

if the structure is given both here and via TypeDefinition, both settings must match
if unspecified, OpcUaType_Byte or the structure type of the TypeDefinition is used

ValueRank, ArrayDimensions: unspecified (= scalar), scalar or a one-dimensional array of any size
AccessLevel, UserAccessLevel: unspecified or (OpcUa_AccessLevels_CurrentRead | OpcUa_AccessLevels_CurrentWrite)
MinimumSamplingInterval: unspecified or 0
WriteMask, UserWriteMask: unspecified or OpcUa_NodeAttributesMask_Value

NodeAttributes for Object:
DisplayName: unspecified or equal to BrowseName
Description: unspecified or any text
EventNotifier, WriteMask, UserWriteMask: unspecified or 0

TypeDefinition for Variable:
OpcUaId_BaseDataVariableType
one of the structure types under Types -> VariableTypes -> BaseVariableType -> BaseDataVariableType -> UserStructures; these are the structures
known to the PLC Engine core.

TypeDefinition for Object:
OpcUaId_FolderType

Each RPC as a calling queue of 10. If the requests are coming faster before handled they will return a memory error.

Machine models from the OPC Foundation or the VDMA directly can be loaded with its corresponding XML file.

The security certificate key minimum length are

Basic128Rsa15: RSA Key Length 1024 .. 4096
Basic256: RSA Key Length 1024 .. 4096
Basic256Sha256: RSA Key Length 2048 .. 4096

Traffic between different OPC interfaces (tunneling) is supported. It will be used for the OPC DA tunnels.

MQTT Interfaces
MQTT Version 3 and 5
MQTT Client if a station need to be a device
MQTT Broker, the server

MQTT comes from the Internet of Things world. It is simple and fast.
A device can simultanously send data to multiple devices.
You can use the client and broker on the same device at the same time.

Controller Interfaces
All controllers will be connected over network. Often this is Ethernet, WLAN or other networks. All serial Ethernet and MPI Ethernet gateways for industrial controllers
usage are supported.

Configuration Interfaces
The configuration can be done with the shipped configuration software or over OPC with the System topic.
The connection for the configuration is encrypted with TLS 1.2. The encryption can be switched off for usage in countries where encryption is forbidden.

Network Redundancy for connections to controllers and devices
Connections to devices and controllers are supporting network redundancy.
Double and triple redundancy can be selected.
Two redundancy operation modi are possible.
In dynamic redundancy any of the connections is working as master. If it breaks another connection becomes the master connection.
In static redundancy the first connection is the master. If it breaks another connection becomes the master. If the first connection works again it will become the master
connection again.

The connections of the redundancy should work on different network adapters.The adapters need different IP subnets for properly work.

Tipi di PLC supportati
Siemens S7 e compatibili come VIPA Speed7, IBH SoftS7 e altri
Siemens S5
Allen-Bradley CompactLogix, ControlLogix (le revisionie)
various Modbus/TCP devices

Modicon
Schneider
Wago
Beckhoff
Phoenix Contact

Raw data.

Comunica via Ethernet

BACnet
BACnet will be used over IP / UDP.
Maximum length of strings: 256 Byte
Status text elements are supported (state_text)
Supported charsets: UTF-8, UTF-16, Latin-1
Unions ("Choice") and structures ("Sequence") are existing for important values as trend, shedule, calendar, prioriry.
The trend data are offered as history data. All unimplemented instances will not be shown.
Enum values are represented as UINT32. Some special enum are handled as bool.
Values in "Octet-String" and "Bit-String" can be written in whole only.

BBMD (BACnet Broadcast Management Device) details

BBMD will be used during the connection establishing and the device search if the devices do not be all in the same collision domain. BACnet uses broadcast during ist
connection establishing.
There are several procedures in BBMD:

Search ussing broadcast.
Search using the IP device address, receive the BACnet ID.
Search using the BACnet id, receice the IP address.

Additionally BBMD can be used connecting older serial only installations to the IP network.

COV (Change Of Values) details

COV represents the event subsystem of BACnet. Events will be offered in browsing the variables, they will be subscribed. If the device will send the data the event will
be generated.
Because BACnet is working with UDP the COV receive can not be guaranteed. Tani is offering an option: If no event will be received during the reconnection time from
the configured connection it will be polled. If the value did not change no event is send for this polling.

BACnet - Writing values with priority-array

These object types have a priority-array in addition to their present-value property:

analog-output
analog-value
binary-output
binary-value
multi-state-output
multi-state-value
access-door

The BACnet spec says:

priority-array is read-only and contains 16 entries (that can be a valid value or NULL).
present-value is read-write and contains 1 value (the non-NULL value with the lowest priority from priority-array, or the value from relinquish-default if no non-
NULL value in priority-array exists).
Writing to present-value uses an optional priority parameter to write to the correct entry in priority-array.

The Tani implementation works as follows:

priority-array is read-write and contains 16 structure entries with 2 fields:
* Value: the data value in this entry (or 0 if no valid value is present)
* ValueValid: a boolean value; 1 if Value is valid, 0 if not (NULL value).
Writing to an element of priority-array implicitly uses a "write present-value with priority" operation to change the desired value.

Writing to priority-array[i].Value always creates a non-NULL entry.
Writing 0 to priority-array[i].ValueValid creates a NULL entry.
Writing 1 to priority-array[i].ValueValid creates a non-NULL entry with value 0 (this is usually not very useful).
Writing to priority-array[i] (as a structured data type) creates a NULL entry when ValueValid is 0. Else a non-NULL entry with the specified Value is created.
present-value is read-write and contains the value obtained by BACnet protocol.
Writing to present-value doesn't transfer the priority parameter. The BACnet device will implicitly write to priority entry 16 in this case.

This mechanism was chosen to allow choosing the write priority via OPC without changing the read syntax for present-value property. This also allows writing NULL
values via OPC.

Implemented Properties

The following object properties are implemented:

Object Type Property BACnet Type OPC Type Remarks
all all BACnetObjectIdentifier UInt32
all all Bit String Array of Boolean
all all Boolean Boolean
all all Character String String
all all Double Double
all all Enumerated UInt32
all all Octet String Array of UInt8
all all Real Float
all all Signed Int32
all all Unsigned UInt32

all Change of State Time
(16) BACnetDateTime DateTime

all Event Time Stamps (130) Sequence of BACnetTimeStamp Array of Structure "Timestamp"
all Object Type (79) BACnetObjectType UInt32

all Time of Active Time
Reset (114) BACnetDateTime DateTime

all Time of State Count
Reset (115) BACnetDateTime DateTime

Access Door
(30) Door Alarm State (226) BACnetDoorAlarmState UInt32

Access Door
(30) Present Value (85) BACnetDoorValue UInt32

Access Door
(30) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"UnsignedPriorityValue" see section "Priority Array"

Access Door
(30) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Analog Input
(0) Present Value (85) Real Float

Analog Input
(0) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Analog Output
(1) Present Value (85) Real Float

Analog Output
(1) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"AnalogPriorityValue" see section "Priority Array"

Analog Output
(1) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Analog Value
(2) Present Value (85) Real Float

Analog Value
(2) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"AnalogPriorityValue" see section "Priority Array"

Analog Value
(2) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Averaging
(18)

Maximum Value
Timestamp (149) BACnetDateTime DateTime

Averaging
(18)

Minimum Value
Timestamp (150) BACnetDateTime DateTime

Binary Input
(3) Present Value (85) BACnetBinaryPV UInt32

Binary Input
(3) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Binary Output
(4) Present Value (85) BACnetBinaryPV UInt32

Binary Output
(4) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"UnsignedPriorityValue" see section "Priority Array"

Binary Output
(4) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Binary Value
(5) Present Value (85) BACnetBinaryPV UInt32

Binary Value
(5) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"UnsignedPriorityValue" see section "Priority Array"

Binary Value
(5) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Calendar (6) Datelist (23) List of BACnetCalendarEntry Array() of Structure
"BACnet.CalendarEntry"

Device (8) Last Restore Time (87) BACnetTimeStamp Structure "Timestamp"
Device (8) Local Date (56) Date Structure "Date"

Device (8) Local Time (57) Time Structure "Time"
Device (8) Object List (76) Sequence of BACnetObjectIdentifier Array of UInt32

Device (8) Protocol Object Types
Supported (96) BACnetObjectTypesSupported Array of Boolean

Device (8) Protocol Services
Supported (97) BACnetServicesSupported Array of Boolean

Device (8) Segmentation Supported
(107) BACnetSegmentation UInt32

Device (8) System Status (112) BACnetDeviceStatus UInt32

Device (8) Time of Device Restart
(203) BACnetTimeStamp Structure "Timestamp"

Event
Enrollment (9)

Object Property
Reference (78) BACnetDeviceObjectPropertyReference Structure

"DeviceObjectPropertyReference"
File (10) Modification Date (149) BACnetDateTime DateTime
Life Safety
Point (21) Present Value (85) BACnetLifeSafetyState UInt32

Life Safety
Point (21) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Life Safety
Zone (22) Present Value (85) BACnetLifeSafetyState UInt32

Life Safety
Zone (22) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Load Control
(28) Actual Shed Level (212) BACnetShedLevel Structure "ShedLevel"

Load Control
(28) Duty Window (213) Unsigned UInt32

Load Control
(28)

Expected Shed Level
(214) BACnetShedLevel Structure "ShedLevel"

Load Control
(28) Present Value (85) BACnetShedState UInt32

Load Control
(28)

Requested Shed Level
(218) BACnetShedLevel Structure "ShedLevel"

Load Control
(28) Shed Duration (219) Unsigned UInt32

Load Control
(28) Start Time (142) BACnetDateTime DateTime

Loop (12) Controlled Variable
Reference (19) BACnetDeviceObjectPropertyReference Structure

"DeviceObjectPropertyReference"

Loop (12) Manipulated Variable
Reference (60) BACnetDeviceObjectPropertyReference Structure

"DeviceObjectPropertyReference"
Loop (12) Setpoint Reference (109) BACnetSetpointReference Structure "SetpointReference"
Loop (12) Present Value (85) Real Float
Loop (12) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean
Multi State
Input (13) Alarm Values (7) Sequence of Unsigned Array of UInt32

Multi State
Input (13) Fault Values (39) Sequence of Unsigned Array of UInt32

Multi State
Input (13) Present Value (85) Unsigned UInt32

Multi State
Input (13) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Multi State
Output (14) Present Value (85) Unsigned UInt32

Multi State
Output (14) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"UnsignedPriorityValue" see section "Priority Array"

Multi State
Output (14) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Multi State
Value (19) Alarm Values (7) Sequence of Unsigned Array of UInt32

Multi State
Value (19) Fault Values (39) Sequence of Unsigned Array of UInt32

Multi State
Value (19) Present Value (85) Unsigned UInt32

Multi State
Value (19) Priority Array (87) BACnetPriorityArray Array(1..16) of Structure

"UnsignedPriorityValue" see section "Priority Array"

Multi State
Value (19) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Notification
Class (15) Recipient List (102) List of BACnetDestination Array() of Structure

"BACnet.Destination"
Schedule (17) Effective Period (32) BACnetDateRange Structure "DateRange"
Schedule (17) Exception Schedule (38) Sequence of BACnetSpecialEvent Array of Structure "SpecialEvent"

Schedule (17) List of Object Property
References (54)

Sequence of
BACnetDeviceObjectPropertyReference

Array of Structure
"DeviceObjectPropertyReference"

Schedule (17) Present Value (85) ABSTRACT-SYNTAX.&Type Structure "Any"
Schedule (17) Schedule Default (174) ABSTRACT-SYNTAX.&Type Structure "Any"

Schedule (17) Weekly Schedule (123) Sequence Size(7) Of
BACnetDailySchedule

7 sub-objects ("Monday", "Tuesday", ...)
of Structure "TimeValue"

Pulse
Converter (24) Present Value (85) Real Float

Object Type Property BACnet Type OPC Type Remarks

Pulse
Converter (24) Status Flags (111) BACnetStatusFlags Array(0..3) of Boolean

Structured
View (29) Subordinate List (211) Sequence of

BACnetDeviceObjectReference
Array of Structure
"DeviceObjectReference"

Trend Log
(20)

Client COV Increment
(127) BACnetClientCov Structure "ClientCov"

Trend Log
(20) Log Buffer (131) BACnetLogRecord Structure "LogRecord" Accessed via "HistoryRead" function,

"Read" shows only one record.
Trend Log
(20)

Log Device Object
Property (132) BACnetDeviceObjectPropertyReference Structure

"DeviceObjectPropertyReference"
Trend Log
(20) Start Time (142) BACnetDateTime DateTime

Trend Log
(20) Stop Time (143) BACnetDateTime DateTime

Object Type Property BACnet Type OPC Type Remarks

KNX and EIB
KNX will be used over IP / TCP and IP / UDP.
The symbol import is using the standarized ESF files.

Databases
PLC Engine is a database client. It connects with user and password to the database.
The standard SQL statements INSERT INTO, UPDATE, SELECT, DELETE, FUNCTION and PROCEDURE will be used over the wizards. Other statements will be
configured directly.
Supported are:

My SQL (from version 1.9 not under Windows XP)
PostGre Sql (not for Windows XP)
Microsoft SQL
Sybase SQL Server, Sybase ASE, SAP ASE (Adaptive Server Enterprise)
ODBC
Oracle can be used with ODBC

Multiple databases can be handled simultanously.
In one database multiple sub databases can be used.
During the configuration the databases will be browsed. This will require depending on the type of the database or the interface a username and a password, possibly
more.
The database itself need to be configured that it can be accessed.
PLC-Engine will need an account on each database.

For using PLC Engine on a PC the locally installed databases can be used also.
On PLC Engine Device a My SQL database is installed. This database will be managed completely by PLC Engine.

TANI PostgreSQL Integration
The TANI PostgreSQL driver explicitly supports all data types listed in the following table. All types not listed here are implicitly converted to the "text" type and handed to
the PLC Engine as a single String.

PostgreSQL type Array type OPC type Description Notes

boolean boolean[] Bit Truth state (true or false)

bit(n)
bit varying(n)

bit(n)[]
bit varying(n)[] Bit Bit vector of (maximum) length n

smallint
smallserial

smallint[]
smallserial[]
int2vector
int2vector[]

Int16 16-bit signed integer

integer
serial

integer[]
serial[] Int32 32-bit signed integer

bigint
bigserial

bigint[]
bigserial[] Int64 64-bit signed integer

oid
oid[]
oidvector
oidvector[]

UInt32 32-bit unsigned integer

real real[] Float 32-bit floating-point value

double precision double precision[] Double 64-bit floating-point value

numeric
decimal

numeric[]
decimal[] Double exact fixed-point value the values are converted to floating-point values, this may lead to loss

of precision

abstime
timestamp
timestamp with time
zone

abstime[]
timestamp[]
timestamp with time
zone[]

Timestamp Timestamp values (date + time) a time zone (if present) is ignored

date date[] Timestamp Date value The time part of the OPC Timestamp is set to 00:00:00

reltime
time
time with time zone

reltime[]
time[]
time with time zone[]

Timestamp Time values a time zone (if present) is ignored
The date part of the OPC timestamp is set to 1970-01-01

char(n)
char varying(n)
text

char(n)[]
char varying(n)[]
text[]

String Character strings (of (maximum)
length n)

General note: all multi-dimensional arrays (including arrays of vectors) are flattened to a single-dimensional array. The identity of the multiple dimensions is lost. This is a

limitation of the internal data handling of the TANI software. Example: {{1,2},{3,4}} is returned in the logic table as {1,2,3,4}. Writing of multi-dimensional arrays (using
INSERT or UPDATE) is not supported.

Logger for diagnostics
The OPC Server contains a logger for diagnostics purposes during plant startup. The logger can be configured. The system load can be big if all controller data in big
plants are logged.

Limits
Maximum number of configurable client connections: 4000.
Maximum length of a single item: 4GB.
Maximum number of elements each connection: 1 million.
Maximum number of elements (Items): 16 million.
Maximum OPC groups each connection: 100.
Maximum number of passive connection for each port is 999.
The OPC synchronous functions returning a bad quality immediately if the PLC connection is not established.
Changes in controller configuration will be checked all 10 seconds if the PLC does not offer a mechanism for this check during write.
Fields can be up to 64K in length each.
Multi dimensional arrays can have up to six dimensions.

Fields can be up to 64K in length each.The maximum amount of configurable logic tables is 60000.
The maximum length of one logic table is 4GB.
Maximum number of entries on a logic element 60000.
File operations can handle up to 64K in each request. Adding data to a file is limited only by the space on the disk.
Multi dimensional arrays can have up to seven dimensions.

Virtual Connections
Virtual connections provide a start point mostly used as destination for redirects.
A virtual connection has connection rights. The redirect destination in this connection will offer the rignts of the virtual connection. As in the logic tables and the status
variable lists the source rights are ignored.
Symbols for the virtual connection can be defined in the symbol editor.
One PLC element can be used once in one virtual connection.

Depending on the license the limits can be less.

Speed
The throughput will be mainly limited by the controller speed or the reaction time of OPC applications.
Read requests to the controller will be optimized as much the controller is supporting this. For that elements will be collected to blocks reading more than requested, but
not for inputs and outputs. These optimizing can be affected by configuration separately for each connection. Optimizing can be switched off, too.
Write requests to the controller are collected or handled in that order the application did called the system.
On OPC all optimizing the individual OPC uses is supported.
The normal time in cyclic controller requests is 50ms.It can be faster if the controller polling interval is set to zero.
Only data are sent to OPC which did change in the controller between two read requests.

The throughput of one logic table normally will be handled below 10ms. Lot amounts of logic tables containing much of mathematics functions may rise the 10ms. This is
true especially on embedded devices without a mathematical co processor.
No handling can be faster than the controller and device data acquisition. The same is true for database access.

Functions

Logic tables

Logic tables are constructed for linear logic. Loops are not possible.

Sequence chains

A sequence chain supports the maximum of 65535 steps each.

Error Handling in Logic Tables

All logic elements which functions can fail are supporting an OK bit. The user need handle this preventing unexpected run-time behavior.

Variables and Structures

Structures can not contain loops.
A structure or variable can be up to 4GB in its size.

Status Diagnostics Lists

The status diagnostics lists are supporting arrays up to 100 values each. If an array is longer than 100 values the first 100 elements are shown only. Writing this array is
not possible.

Field and text optimizings

The from version 1.8 existing field optimizings will prevent reading the long fields too often, the index is requested on standard only.This optimizing bases of the fact that
the index does net changed too frequently.

Usage of memory
Program code: A minimum of 6MB is used. The exactly memory usage is depending of the internal behavior of the operating systems. So dynamic libraries are
loaded once for all running instances using them. Example: If the standard library is not loaded already it will use additional 4MB of memory.
User data: The minimum data usage is 2MB internally. Additional the controller data are held in memory for comparing new data. Each item uses the length of
data and additional 64 bytes. Each configured connection occupies 4KB.

Fields can be up to 64K in length each.The maximum amount of configurable logic tables is 60000.
The maximum length of one logic table is 4GB.
Maximum number of entries on a logic element 60000.

Depending on the license the limits can be less.

Usage of computation time
The consumed computation time is depending on the load with communication. Most the time it will be waited for controller data or OPC application reaction.
All software is working with events. This maximizes the throughput and minimizes the usage of computation time.
Multiple CPU are supported. Up to ten CPU will be used, the main work will be handled by three CPU.

Installation
The installation does depending on the product install multiple parts separately. On uninstall not all products are deleted automatically. But all installed products can be
deleted over the menu or the software part in the system control manager.
The user settings will be preserved and not deleted during uninstall.

Automatic structure import
Type Auto-Import works for all client protocols that are able to use structures/enumerations and have online browsing functions. This includes:

OPC UA
OpcPipe
Siemens S7-1500
Rockwell CompactLogix/ControlLogix/MicroLogix
IEC104
KNX

These protocols have a fixed list of structures and don't need Auto-Import:

BACnet

These protocols have online browsing, but don't use structures/enumerations:

OPC DA
MQTT

All other protocols don't have online browsing.

Type Auto-Import is implemented in two steps:

1. A structure or enumeration type which has not been imported is assigned a Node ID when:
the Item is being monitored (by calling CreateMonitoredItems):
the Item is being read/written (by calling Read/Write):
the Item is being registered (by calling RegisterNodes):
the DataType attribute of an Item with this type is accessed:

2. A structure or enumeration type which has not been imported is actually imported when:
the Item is being monitored (by calling CreateMonitoredItems):
the Item is being read/written (by calling Read/Write):
the Item is being registered (by calling RegisterNodes):
the DataTypeDefinition attribute of the DataType node is read (after it has been created by step 1):
the EnumValues property node is read (for Enumerations, after it has been created by step 1):

Limitations:

Before Auto-Import Step 1, any types that have not been imported yet:

are not available anywhere

Before Auto-Import Step 2, any types that have not been imported yet:

have a DataType Node ID assigned
are not browseable in Types/DataTypes/BaseDataType/Structure/UserStructures or Types/DataTypes/BaseDataType/Enumeration
are not present in the XML data in Types/DataTypes/OPC Binary/UserStructures
are not browseable in Types/VariableTypes/BaseVariableType/BaseDataVariableType/UserStructures
don't have the type comment available
don't have Encoding Node IDs available

After Auto-Import Step 2:

the newly imported types behaves exactly as any manually imported type
if the type later changes in the source systen, the import cache will NOT be updated

A client wishing to use a variable with a structure/enumeration type that has not been imported should

either read the DataType attribute of the variable, then read the DataTypeDefinition attribute/EnumValues property of the type node,
or monitor/read the Value attribute of the variable before checking the data types

to trigger the type import. Only after completing one of these the structure type is available in the server.

Sistemi operativi supportati
Windows 7 up to 10
Windows Server 2008, 2012, 2016 and 2018
Windows XP, Vista
Linux Debian, Ubuntu, Suse, Redhat and other Distributions
Linux on the Raspberry and Odroid computers
Linux on the Wiesemann & Theis pure.box 3
Linux 64 Bit come Docker or Kubernetes Container

OPC DA will require Microsoft Windows. All from Microsoft supported operating systems for Intel and all user languages will be supported. The latest service pack
must be present.
Under Windows the OPC server are working as service, Linux runs them as daemon.
The Raspberry version supports all Linux distributions offered for this platform.
All other will run under lot of operation systems also, mostly Linux based.
Under Linux the OPC Server needs a POSIX compatible System. The Standard Library needs V2.2 as minimum. The configuration software is bases on KDE 4
and is needing the kdelibs. Please use actual distributions like Debian, Ubuntu, Suse, Redhat or similar.

https://www.docker.com/
https://kubernetes.io/

Tested is: Windows Intel 32 and 64 bit, Linux Intel 32 and 64 Bit, Linux MIPS CPU, Linux ARM 32 and 64 Bit CPU.
Running in virtual machines is supported. Docker containers are supported, too.
Windows 7 needs as minimum service pack 1 for using the drivers.
All configurations are compatible to all OPC servers, also over operating systems.

	Technical Data OpcEngine
	TODO: DescriptionOpcEngine.inc
	OPC Interfaces
	OPC UA functionality and limitations

	MQTT Interfaces
	Controller Interfaces
	Configuration Interfaces
	Network Redundancy for connections to controllers and devices
	Tipi di PLC supportati
	BACnet
	BBMD (BACnet Broadcast Management Device) details
	COV (Change Of Values) details
	BACnet - Writing values with priority-array
	Implemented Properties

	KNX and EIB
	Databases
	TANI PostgreSQL Integration
	Logger for diagnostics
	Limits
	Virtual Connections
	Speed
	Functions
	Logic tables
	Sequence chains
	Error Handling in Logic Tables
	Variables and Structures
	Status Diagnostics Lists
	Field and text optimizings

	Usage of memory
	Usage of computation time
	Installation
	Automatic structure import
	Sistemi operativi supportati

